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Attractors and Characteristic Exponents 
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A natural  definition of an attractor as an invariant measure is given (based on 
the ergodic theory of axiom A diffeomorphisms) and some results are proved 
which support  this definition. It is also proved that if an attractor has  every 
characteristic exponent less than zero in a set of nonzero measure, then the 
support  set of the attractor is an asymptotic stable periodic orbit. 
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1, ~NTRODUCTION 

A physically reasonable definition of "attractor" is necessary if this 
definition is to be put to a practical test. Milnor (6) has an interesting 
discussion of some of the difficulties related to the attractor concept. 

The characteristic exponents (CEs) have been extensively used, in most 
cases in an intuitive manner, to characterize attractors. The CE are impor- 
tant because they can be estimated in computer experiments and from 
experimental signals. (3'4"9'1~ Although the CEs are defined in a set of total 
invariant (probability) measure, if we want to use them to characterize 
the attractors it is necessary to associate an invariant measure to each 
attractor. 

In Section 2, based on results of the ergodic theory of C 2 axiom A 
diffeomorphisms, a natural definition is given of an attractor as an 
invariant measure and some results are proved which support this 
definition. 

Section 3 studies the relations between attractors and CEs; if an 
attractor has all CEs less than zero in a set of nonzero measure, then the 
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support  set of the "attractor" is an asymptotic stable periodic orbit. The 
proof  of this result is given in Section 4. 

Section 5 gives a discussion of the case of flows. 

2. A T T R A C T O R S  

In this work X will denote a smooth compact  manifold. The Rieman- 
nian structure of X induces a volume measure l on X, and this measure will 
be called a Lebesgue measure. It does not really matter  which particular 
measure is used, since I only distinguish between sets of Lebesgue measure 
zero and sets of positive Lebesgue measure. 

Let C(X) denote the Banach algebra of real, continuous functions on 
X with the uniform norm. Recall that the set M(X) of probability measures 
on X forms a convex, compact,  metrizable subset of the weak dual of C(X) 
(the topology of the weak dual is called the weak *-topology ). 

Let d :  X ~ X  be a continuous map. The set I(d) of d - inva r i an t  
probability measures is a nonempty convex and compact subset of M(X). I 
shall use a metric d compatible with the topology of X, but the results will 
not depend on the special choice of d. I shall also use the induced map 
d , :  M(X)--* M(X) given by (d,l~)(S)=/t(d-lS); note that d,6x=6~x, 
where fix is the unit mass at x e X. 

Recall some results of the ergodic theory of C 2 axiom A 
diffeomorphismsJ 1) Let f :  X ~  X be a C 2 axiom A diffeomorphism and s a 
basic set that has a neighborhood U with f ( U ) c  U; then there exist a set 
W and an ergodic measure o- such that U \  W has zero Lebesgue measure, 
and 

lim _1 ,~1 f ,  fix = a (weak*-topology) 
n ~  ~ / ' /  i = 0  

whenever x ~ W. 
The following definitions are based on the above results. 

Def in i t ion .  The measure vel(d)  attracts #~M(X) if 

lim 1 .~1 - d ' , ~ = v  
n ~ ~ / ' /  i = 0  

Def in i t ion .  Let veI(d). The set Gv={x~X:v attracts fix} is 
called the attracting set of v. 

Def in i t ion .  The measure veI(d) is an attractor for d : X ~ X  if 
/(c~) > o. 
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Now, I prove some results that support the above definitions. The 
integral ~xfd# will be denoted by ~fd# or # ( f ) ,  and ZTL-o~f(sg~x) by 
(S,f)(x). 

Proposi t ion 1. G, is a measurable set for any # e  I ( ~ ) .  

ProoL If feC(X),  we define X f : X ~ R  and as :X~R by 

1 
Z'f(x) = lim sup - (S~f)(x) 

n ~ o o  1"/ 

af(x) = l ina  infln (S. f)(x) 

Since (S,,f)/n is continuous for each heN, we have that Xf and ar are 
measurable functions. 

Let A s be the subset of points x of X such that lira n ~ ~(1/n)(Snf)(x) 
exists and is equal to #( f ) .  This set consists of XfJ(#(f))c~ af l (#(f)) ,  so 
A s is a measurable set, since each set in this intersection is measurable. 

Choose a countable dense subset (f~)~ of C(X). By approximating a 
given geC(X) by members of (fk)~, it follows that G~= 0 k ~ l  Aft. Since 
each ASk is measurable, we get that G, is measurable. ! 

Proposi t ion 2. The number of distinct attractors for sr is at most 
countably infinite. 

Proof. It is sufficient to note that if the measures v and # are distinct, 
then Gvn  G ~ = ~ .  II 

Milnor (6) has proposed a different definition of an attractor based on 
the privileged role which the omega limit set co(x) of a point x e X should 
play for the asymptotic behavior of dynamical systems. Recall that co(x) is 
the collection of all accumulation points for the sequence (x, ~ 'x,  d2x,...), 
and that co(x) is always closed and nonempty. 

Proposition 3, If # ~ I(sd) attracts 5x, then #(co(x))= 1. 

Proof. Let x e  G~. Note that co(x)-- 0 ,~>00(s l"x) ,  where O(z)is the 
orbit of z e X defined as O(z) = {z, d z ,  sd2z,... }, and the bar represents the 
closure operation. 

If O(x) is dense in X, the same occurs with O(sr Vn e N, and clearly 
co(x) = X. If O(x) is not dense in X, then X\ O(x) is a nonempty open set. 

Let e > 0 be small enough for 

K= {y6 X: d(y, O(x)) > e} 
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to be nonempty. Consider the Urysohn function 

~(y) = 
l l if ye O(x) 

0 if yeK 
0 < u, < 1 otherwise 

Since u~ is continuous, we have 

n - - I  

l=u~(x)= lim -1 ~ u~(dix )=f u~dp 
n ~ o o  n i = 0  

Hence ~u~d~=l and then /~(O(x))=l.  Similarly one proves that 

#(O(~nx)) = 1 for any n e N. The proposition follows readily from o)(x) -- 

N.~0 o(~"x).  ! 

If ~t attracts 3x, one can conclude, by Proposition 3, that /~ gives a 
probability distribution on re(x) and also #(X\oo(x))= 0, so the knowledge 
of p is physically more important than that of ~o(x) itself. 

In general it is easier to work with the Lebesgue measure than with 
the invariant measure. 

Proposition 4. Let veI(d) be an attractor for ~ ;  then there 
are absolutely continuous measures with respect to Lebesgue measure l 
attracted by v. 

Proof. Let heLl(l) be a positive function such that Y=~ahdl>O. 
Define the measure # e M(X) by 

I f f e  C(X), then 

dU = (ZG h)/Y dt 

1 ( f~  s~i) XGv 
dl J -f 

ni= o Y 

Since #(Gv)= 1, one can apply the dominated convergence theorem to 
obtain 



Attractors and Characteristic Exponents 607 

i=0 ,a, n - ~  n Y 

Since f e  C(X) is arbitrary, the proof is complete. | 

This work has involved the assumption that attractors, which would 
be observed in practice, are associated with time averages of initial 
conditions in a set of nonzero Lebesgue measure. A general proof of the 
existence of time averages is an old problem; Birkhoff's ergodic theorem 
proves the existence of such averages in a set of total invariant measures, 
but in general, the invariant measures are singular with respect to Lebesgue 
measure. 

3. C H A R A C T E R I S T I C  E X P O N E N T S  

The characteristic exponents (CEs) are well defined in a set of total 
invariant measure by a theorem of Oseledec. (4'8) Denote the CEs at a point 
x e X by 21(x) ~> )[2(X)/> )~3(x)/> ...; recall that if # e I(~4) is ergodic, then 
the CEs are constant #-a.e. 

As already observed, it is possible to estimate the CEs from 
experimental signals and in computer experiments, so the use of the CEs 
would be an interesting way to try to characterize attractors; also of 
interest are the intuitive relations between positive CEs and "chaos." 

Unfortunately, knowledge of the CEs (in most cases this is the infor- 
mation we have in an experiment) is not enough, in general, to characterize 
the attractors. There are examples of ergodic attractors # such that 21> 0 
#-a.e., some of them with nonzero metric entropy (4~ and others concen- 
trated on a periodic orbit. One example of the last case is given by the map 
f :  [ - a ,  a]  ~ [ - a ,  a] ,  a = (64/5 x ~ ) ,  

f(x)={4oX(1-xZ)2 if otherwise x ~ [ - 1 ,  1] 

where 6 o is the unique attractor and 21(0)= log 4. 

D e f i n i t i o n .  An asymptotic stable periodic orbit (ASPO) is a 
periodic orbit P that has a neighborhood U such that d(~4"x, P) ~ 0 as 
n ~ o o  for a n y x ~ U .  

If # e l ( d )  is an attractor such that 21= 0 p-a.e., many possibilities 
may occur: the support set of g could be an ASPO, a quasiperiodic orbit 
on a torus, something like the "Feigenbaum attractor, ''(46) etc. 
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In the case where 21 < 0 a.e. the following result due to Ruelle (8) holds. 

k e m m a  5. L e t d : X ~ X b e a C ~ + ~ m a p .  I f t ~ I ( d )  isergodicand 
all CEs are less than zero #-a.e., then the support  of # is an ASPO. 

In practice, it is very hard to verify if an observed attractor is ergodic 
or not, so a generalization of Lemma 5 which does not suppose ergodicity 
would be welcome. One can easily imagine nonergodic measures such that 
all CEs are less than zero a.e. 

T h e o r e m  6. Let v be an invariant measure for the C ~+~ map 
d :  Jf-~ X such that the following conditions hold: 

(i) G ~ r  

(ii) There is a measurable set F c  X of nonzero v-measure such that 
all CEs are less than zero at any point of F, 

Then v is ergodic and its support  is an ASPO. 

C o r o l l a r y .  If instead of (i) in Theorem 6 it is assumed that (i') v is 
an attractor for d ,  then the same conclusions hold. 

4. P R O O F  OF T H E O R E M  6 

For  the proof  of Theorem 6 we need the ergodic decomposition 
theorem. Let K be the set of points of X such that 

l n - 1  
lim - ~ d , 6 x  

n ~ o c  n i = 0  

exists; it easily follows by the Riesz representation theorem (5) that for each 
x ~ K there is a unique #x e I (d)  such that 

1 n~l  i 
lim - ~ d , 6 : , = # : ,  

n ~ cc  F/ i = 0  

Let J denote the set {x~ K: #x is ergodic and x ~ support Px}. 

L e m m a  7 (Ergodic decomposition). If # e l ( d ) ,  then # ( J ) =  1, any 
gEL~(~) is #~-integrable for x in a subset of J of total #-measure, and 

The proof  of Lemma 7 can be found in the book by Marl& (s) 
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Proof of Theorem 6. First note that fF21dv<O. By the ergodic 
decomposition of v (Lemma 7), one has 

j F ~ l d y = f Z F ~ l d Y ~ f ( f F ~ l d [ ' ~ ) , ) d v ( y ) ~ O  

Thus, there is a measurable set T with v(T)> 0 and ~F 21 d#y < 0 whenever 
yeT.  

L e m m a  8. The cardinality of T is  at most countably infinite, and if 
y E T, the support of #y is an ASPO. 

Proof. Let y e T .  Since ~F))d#y<O, one has )~I(z)<0 in a set of 
nonzero /zy-measure. One has 2 ~ < 0  /Zy-a.e., as it follows from the 
ergodicity of/~y. By Lemma 5 the support of py is an ASPO (y E T). 

Define ~b: T ~  l ( d )  by ~b(w)= IZw. Since w belongs to the support of #,, 
and this support is an ASPO, it follows that the cardinality of ~b-~(#w) is 
finite. Clearly, there are at most countably infinite ASPOs; therefore, the 
cardinality of T is also at most countably infinite. | 

Now, we have the decomposition 

v= ~'qypy+qa 
.rE T 

in the sense that 

v(f) = ~'  qy#y(f) + qa(f) Vf E C(X) 
.v~ T 

where ~2' denotes sum without repetition in #y(y E T) and qy, q are non- 
negative real numbers such that ~'y ~ r qy > 0 and q + Z'y ~ 7- qy = 1. In fact, if 
f e C( X), then 

v(f)= f f dv= f #y(f) dv(y) 

= fT y(f) dv(y)+ fx T ,(f) dv(y) 
Since T is at most countably infinite and the support of #y(y E T) is an 

ASPO, the first term above may be written as 

py(f) v(y)= ~' #y(f) v(support/Zy) 
y e t  y e T  

If v(X\ T) r O, define L: C(X) ~ R by 

L(g) = 1Iv(X\ T). f Zx\ r(Y) #y(g) dr(y) 
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By the Riesz representation theorem (5) there exists a unique measure 
7z~M(X) such that L ( g ) =  7r(g)Vge C(X). From the definition of L one 
easily concludes that rc e I(~r 

The following correspondences show that the decomposition is valid: 
qy=v(support#y); if v(X\T)~O, then 7z=a and q=v(X\T); if 
v(X\ T) = 0, then q = 0. 

Since v(T)=~'y~TV(supportl~y)>O, there is weT such that q~= 
r > 0. One can assume, without loss of generality, that #w = 6p for some 
p~X. 

Recall that the support of 6p is an ASPO; therefore G~r is nonempty 
and there is a neighborhood V o f p  such that V c  G~. 

Lemrna  9. G~cG~. 
Proof. Let x e  G~. Now we have the decomposition 

v=r6p+(1 -r )p  

where p e I(~r Pick e > 0 such that B(p, 2~)c  V, where B(p, 2e) denotes 
the open ball with center p and radius 2e, and the bar represents the 
closure operation. 

Let u~ be an Urysohn function such that 

u , ( z )  = 

1 if zeB(p,e) 
0 if zeX\B(p, 2e) 
0 < u~ < 1 otherwise 

Since u~ is continuous, one has 

lim inf 1 (SnxB(p,~))(x) >~ lim -1 (S~u~)(x) = f u~ dv 
n ~ o o  /'/ n ~ oo  / ' /  

By the above decomposition 

f u~dv=r f u, dap+(1-r) f u~dp>~r>O 

Hence 

lim inf 1 (SnZe{p,2J(x) > 0 
n ~ o ( 3  n 

and therefore there is a k e N such that ~r e B(p, 2~) ~ V c  G~. Since 
Uj~= 1 d - J ( V )  ~ G~, one has G~ ~ G~p. | 
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To conclude the proof of the theorem, it is enough to observe that 
since Gv r ~ ,  we obtain v = 6p. Let x ~ (Gv c~ G6,); then 

f f dv= lim - l ( s ~ f ) ( x ) = f f d 6 p  Vf e C(X) 
n ~ o o  n 

Therefore v = 6p, i.e., v is an ASPO. 

5. FLOWS 

In this Section, I consider the case of flows. Let Ot be a flow generated 
by a C I+ ~ vector field on X. The definitions, results, and proofs for maps 
given in Section 2 are analogous for ~,. I shall consider an attractive fixed 
point for Ot as an ASPO of period zero. For  the generalization of 
Theorem 6 for flows the following result due to Campanino (2) is needed. 

Lemma 5A. Let ~t be as above and # be an ergodic probability 
measure for 0~. 

(i) If 21 < 0 p-a.e., then the support of # is an ASPO of period zero. 

(ii) If 2 2 < 0  #-a.e. and the vector field does not vanish for some 
point in the support of #, then the support of # is an ASPO of period 
greater than zero. 

Now I state and sketch the proof of the result corresponding to 
Theorem 6 for flows. The proofs of the Riesz representation theorem and 
the ergodic decomposition theorem (Lemma 7) for flows can be found in 
ref. 7. 

Theorem 6A. Let v be an invariant measure for the flow Or: X ~  X 
generated by a C 1 + ~ vector field such that Gv r ~ .  

(j) If there is a measurable set F c  X of nonzero v-measure such that 
all CEs are less than zero at any point of F, then v is ergodic and its 
support is an ASPO of period zero. 

(jj) If there is a measurable set F c  X of nonzero v-measure such that 
2 2 < 0 at any point of F and the vector field does not vanish in F, then v is 
ergodic and its support is an ASPO of period greater than zero. 

Corollary. If instead of Gv r ~ in Theorem 6A one assumes that v 
is an attractor for s~r the same conclusions hold. 

Proof of  Thoorom 6,4. (j) The proof of Theorem 6A(j) is 
analogous to the proof of Theorem 6. 
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(jj) One  has ~F .~2 dv < 0. By the ergodic decomposi t ion  of v there is a 
set T with v ( T ) > 0  and ~Fj,2dlly<O whenever  y e T  (recall that  #y is 
ergodic). 

L o m m a  8A.  The  cardinali ty of T is at mos t  countably  infinite, and 
if y e T, the suppor t  of #y is an A S P O  of per iod greater  than  zero. 

Proof. Since ~v/~2 dkty < 0, one has 2 2 < 0 /ly-a.e. and ~y(F) > 0; then 
there is a point  in F that  belongs to the suppor t  of #y (this result easily 
foilows f rom the regulari ty of/ly). By L e m m a  5A(ii) the suppor t  of #y is an 
A S P O  of per iod greater  than  zero. 

The  rest of the proofs of L e m m a  8A and T h e o r e m 6 A ( j j )  are 
ana logous  to the proofs  of L e m m a  8 and Theorem 6, respectively. | 
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